If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2+80x+76=0
a = 4; b = 80; c = +76;
Δ = b2-4ac
Δ = 802-4·4·76
Δ = 5184
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{5184}=72$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(80)-72}{2*4}=\frac{-152}{8} =-19 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(80)+72}{2*4}=\frac{-8}{8} =-1 $
| y+17/7=6 | | t/15+16=16 | | 3x+3x+5x-10+5x-10=100 | | x27=3x | | 21-2x+4=13 | | v+2/3=4 | | 60=5(j+90) | | 3/4=m+1/7 | | 8(x+2)=5x+46 | | 19-5b=-61 | | 4x+6+6x+24+4x-25=180 | | 4−–2q=6 | | 4m-m-2=19 | | m/2+10.37=14.63 | | 9m+10=91m= | | 6x−4=-4+8 | | -5+m=-3 | | -2(s-2)=-10 | | 7x-4x+6=9 | | 2-3(2m+1)=7 | | -9(t-83)=-90 | | 33=k-63 | | -2(2x+12)=34 | | 2(r-56)=30 | | 13u-11u-1=17 | | (3x+26)+(5x+52)+(2x-10)=180 | | 4x+6+6x+24=4x-25 | | t/7+-31=-26 | | 6(x-2)-3x=3(3x-3)-6x | | -2x+5-3x=35 | | m+4.5=-3.2 | | 5-x-20-2x=-21 |